

Analyse spatiale: formes et processus (M1)

Cours 3 : HETEROGENEITE SPATIALE Régions Homogènes – Gradients - Discontinuités

Claude GRASLAND – Professeur de Géographie - Université Paris 7

Objectifs

- 1- Mesure des (dis)similarités entre les lieux -
- 2- Organisation spatiale des différences (gradients, discontinuités, ...)
- 3- Définition de régions homogènes

Plan de cours

A.) MESURE ET CARTOGRAPHIE DES DISSEMBLANCES

- Mesures univariées (différence absolue / Différence relative / Variance)
- Mesures multivariées (métriques euclidienne / métrique du Chi-2)
- Cartographie des similarités & Dissimilarités

B) ANALYSE MULTISCALAIRE DES INEGALITES

- Ecart à un niveau global
- Ecart à un niveau intermédiaire
- Ecart à un niveau local
- Discontinuités absolues
- Discontinuités relatives

C) MODELISATION DES DISSIMILARITES DANS L'ESPACE

- Effet d'appartenance (régions homogènes & discontinuités)
- Effet de voisinage (autocorrélation spatiale & gradients)

Bibliographie

L'essentiel des connaissances utilisées est résumée dans le chapitre 4 (« Régions homogènes ») du tome 1 du manuel d'analyse spatiale de D. Pumain et T. Saint-Julien :

• **Pumain D., Saint-Julien T., 1997**, *L'analyse spatiale (1) : Localisations dans l'espace*, Cursus-géographie, Armand-Colin, Paris, 167 p.

En ce qui concerne plus précisément les méthodes d'analyse multiscalaire des dissemblances, on peut se reporter à l'analyse des différences de richesse par habitant des régions européennes .

• Grasland C., 2004, « Les inégalités régionales dans une Europe élargie », In. Bernard Chavance (coord.), Les incertitudes du grand élargissement : L'Europe centrale et balte dans l'intégration européenne, L'Harmattan (collection « Pays de l'Est »), pp. 181-214

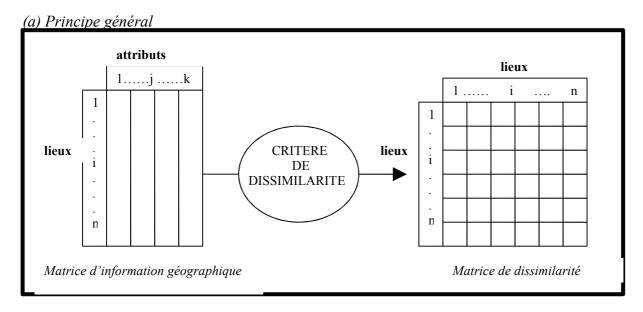
En ce qui concerne l'étude des discontinuités spatiales, on peut se reporter aux deux articles suivants :

- **Grasland C., 1997**, "L'analyse géographique des discontinuités territoriales: l'exemple de la structure par âge des régions européennes vers 1980", *Espace Géographique*, 4, 30 p
- François J.C., 2005, Les évolutions récentes de la division sociale de l'espace francilien: Observation des discontinuités structurelles par l'analyse discriminante (1 tabl., 5 fig.), Espace Géographique, 3,

Document n°1 : Analyse de 7 pays de méditerranée occidentale

(a) Variables de stock (taille)

	(a) variables de slock (latile)						
Name	SUP	AGR	POP	BIR	GNP	GDP	CO2
France	552	195	59.1	709	1550	1130	391
Italy	301	109	57.7	519	1160	1040	436
Spain	506	192	39.4	355	571	555	251
Algeria	2382	80	30.8	924	46	91	102
Libya	1760	21	5.0	140	10	24	44
Morocco	447	96	28.2	649	36	102	30
Tunisia	164	49	9.5	209	20	50	17
Total	6112	742	229.7	3505	3393	2992	1271
Definition of var	riables						
SUP	Area in	1999 (tho	usands of	f km2)			
AGR	Agricult	ure area i	n 1999 (t	housands	of km2)		
POP	Populati	on in 199	9 (million	ns of inh.)		
BIR	Birth Ra	te in 199	9 (thousa	nds of bir	ths)		
GNP	Gross National Product in 1999 (in billions of US \$)						
GDP	GDP Gross Domestic Product in 1999 (in billions of US \$ p.p.a)						
CO2	Carbon 1	Dioxide E	Emission	in 1998 (1	millions o	of tons)	


(b) Variables de taux (intensité)

	((o) variao	ies ae iau	x (iniensi	ie)		
Name	DEM1	DEM2	DEM3	ECO1	ECO2	ENV1	ENV2
France	107	303	12	26200	19100	6.6	0.35
Italy	192	529	9	20100	18000	7.6	0.42
Spain	78	205	9	14500	14100	6.4	0.45
Algeria	13	385	30	1500	3000	3.3	1.12
Libya	3	238	28	2000	4800	8.8	1.83
Morocco	63	294	23	1300	3600	1.1	0.29
Tunisia	58	194	22	2100	5300	1.8	0.34
West. Medit.	38	310	15	14800	13000	5.5	0.42
Definition of va	riables						
DEM1	Gross p	opulation	density in	n inh/km2	2 (POP/SU	JP)	
DEM2	Net pop	ulation de	ensity in	inh/km2	(POP/AC	GR)	
DEM3	Birth ra	te (BIR/P	OP)				
ECO1	GNP in \$ per inhabitant (GNP/POP)						
ECO2	GDP in p.p.a per inhabitant (GDP/POP)						
ENV1	CO2 in	tons per i	nhabitant	(CO2/PC)P)		
ENV2	CO2 in	kg per \$ o	of GDP (CO2/GDF	P)		

Document n°2 : Construction d'une matrice de dissimilarité

(b) Calcul des dissimilarités pour un seul critère (densité de population)

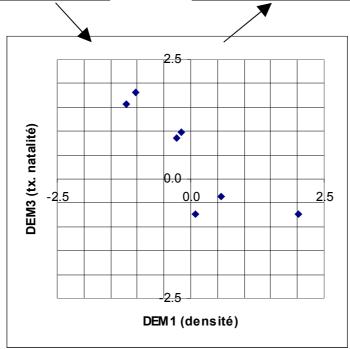
(b) Calcul des dissimilarités pour un seul critére (densité de population)									
		abs(Xi	i-Xj)						
			Fra	Ita		Alg	Lib	Mor	Tun
		Fra	0	85	29	94	104	44	49
		Ita	85	0	114	179	189	129	134
		Spa	29	114	0	65	75	15	20
		Alg	94	179	65	0	10	50	45
		Lib	104	189	75	10	0	60	55
		Mor	44	129	15	50	60	0	5
	/	Tun	49	134	20	45	55	5	0
		(Xi-Xj)	* (Xi-X	j)					
Name	DEM1		Fra	Ita	Spa	Alg	Lib	Mor	Tun
France	107	Fra	0	7225	841	8836	10816	1936	2401
Italy	192	Ita	7225	0	12996	32041	35721	16641	17956
Spain	78	Spa	841	12996	0	4225	5625	225	400
Algeria	13	→ Alg	8836	32041	4225	0	100	2500	2025
Libya	3	Lib	10816	35721	5625	100	0	3600	3025
Morocco	63	Mor	1936	16641	225	2500	3600	0	25
Tunisia	58	Tun	2401	17956	400	2025	3025	25	0
West. Medit.	14800	max(X	(i,Xj) / N	/lin(Xi,)	(j)				_
	_		Fra	Ita		Alg	Lib	Mor	Tun
		Fra	1.0	1.8					1.8
		Ita	1.8	1.0	2.5	14.8	64.0	3.0	3.3
		Spa	1.4	2.5	1.0	6.0	26.0	1.2	1.3
		Alg	8.2	14.8	6.0	1.0	4.3	4.8	4.5
		Lib	35.7	64.0	26.0	4.3	1.0	21.0	19.3
		Mor	1.7			4.8	21.0		1.1
		Tun	1.8	3.3	1.3	4.5	19.3	1.1	1.0

La France ressemble-t-elle plus à l'Italie ou au Maroc ?

L'Algérie ressemble-t-elle plus à la Libye ou à la Tunisie?

(c) Standardisation

Variables standardisées


Name	DEM1	DEM2	DEM3	ECO1	ECO2	ENV1	ENV2
France	0.6	-0.1	-0.4	1.2	0.9	0.4	-0.1
Italy	2.0	2.0	-0.7	0.5	0.8	0.8	0.0
Spain	0.1	-1.0	-0.7	0.0	0.2	0.3	0.1
Algeria	-1.0	0.7	1.8	-1.4	-1.5	-0.8	1.3
Libya	-1.2	-0.7	1.6	-1.3	-1.2	1.2	2.6
Morocco	-0.2	-0.1	1.0	-1.4	-1.4	-1.6	-0.2
Tunisia	-0.3	-1.1	0.8	-1.3	-1.2	-1.3	-0.1
moyenne	0	0	0	0	0	0	0
écart-type	1	1	1	1	1	1	1

(d) Dissimilarité pour deux critères (Densité et Natalité)

Données Distance euclidienne sur variables normées

Name	DEM1	DEM3
France	0.6	-0.4
Italy	2.0	-0.7
Spain	0.1	-0.7
Algeria	-1.0	1.8
Libya	-1.2	1.6
Morocco	-0.2	1.0
Tunisia	-0.3	0.8

	Fra	Ita	Spa	Alg	Lib	Mor	Tun
Fra	0.0	1.5	0.6	2.7	2.6	1.5	1.5
Ita	1.5	0.0	1.9	4.0	4.0	2.8	2.8
Spa	0.6	1.9	0.0	2.8	2.6	1.7	1.6
Alg	2.7	4.0	2.8	0.0	0.3	1.2	1.2
Lib	2.6	4.0	2.6	0.3	0.0	1.2	1.2
Mor	1.5	2.8	1.7	1.2	1.2	0.0	0.1
Tun	1.5	2.8	1.6	1.2	1.2	0.1	0.0

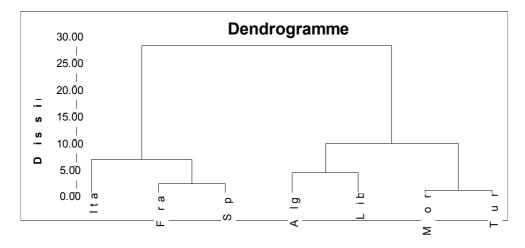
Quels sont les 2 pays les plus ressemblants pour les critères DEM1 et DEM2?

Quels sont les 2 pays les moins ressemblants pour les critères DEM1 et DEM2?

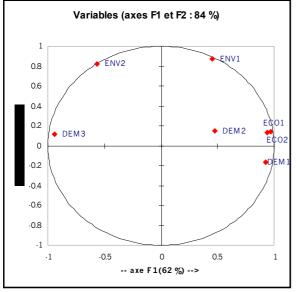
Quel pays est le plus ressemblant de tous les autres pour les critères DEM1 et DEM2?

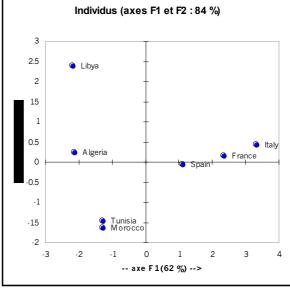
Quel pays est le plus dissemblant de tous les autres pour les critères DEM1 et DEM2?

(e) Dissimilarité pour K critères (DEM1 ... ENV2)

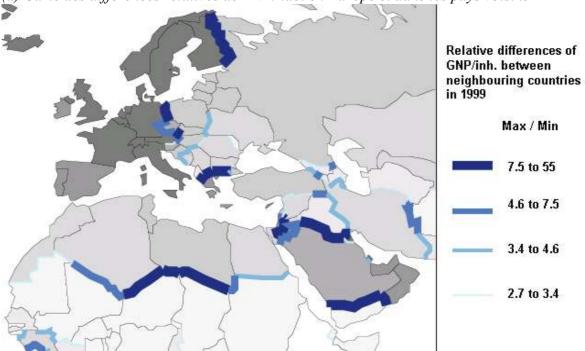

Il s'agit d'un problème classique d'analyse des données où l'on va mesurer la distance entre les individus dans un espace à K dimensions (autant qu'il y a de variables).

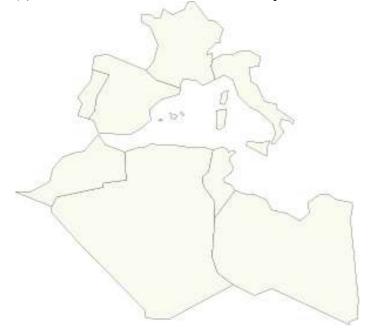
Attention! le choix du critère de dissimilarité dépend de la nature du tableau :


- **□** Tableau de mesure : distance euclidienne sur variables standardisées
- **⇒** Tableau de contingence : distance du chi-2


(f) Application au tableau des pays méditerranéens Matrice des dissimilarités :

	France	Italy	Spain	Algeria	Libya	Morocco	Tunisia
France	0	2.660	1.804	4.884	5.144	4.294	4.091
Italy	2.660	0	3.666	5.523	6.114	5.141	5.354
Spain	1.804	3.666	0	4.229	4.250	3.428	2.971
Algeria	4.884	5.523	4.229	0	2.766	2.274	2.668
Libya	5.144	6.114	4.250	2.766	0	4.200	3.955
Morocco	4.294	5.141	3.428	2.274	4.200	0	1.003
Tunisia	4.091	5.354	2.971	2.668	3.955	1.003	0

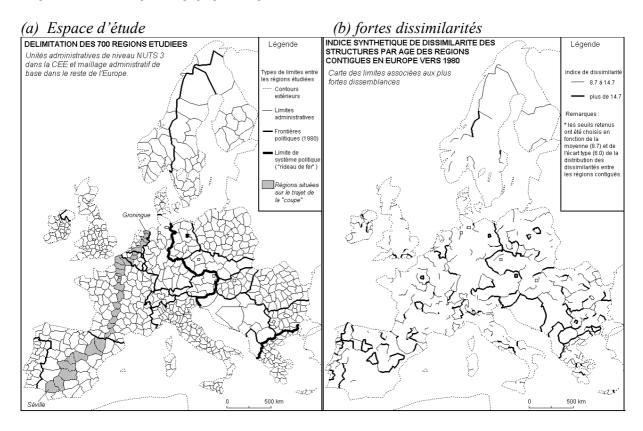

Visualisation des dissimilarités à l'aide du premier plan factoriel de l'ACP



Document n°3: Cartographie des dissemblances

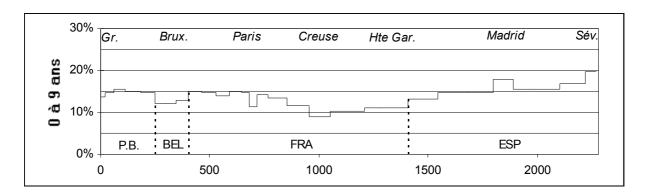
(a) Carte des differences relatives de PNB/hab. en Europe et dans les pays voisins

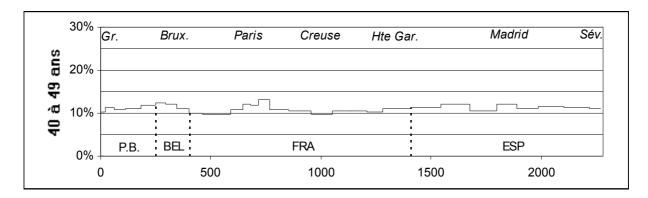
(b) Carte des similarités / dissimilarités pour 7 critères économiques et démographiques

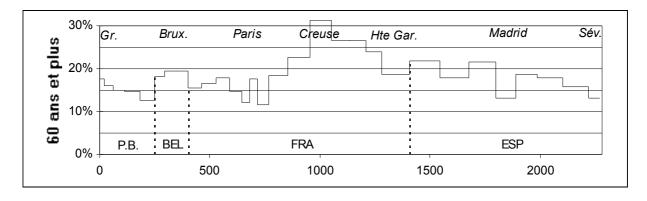


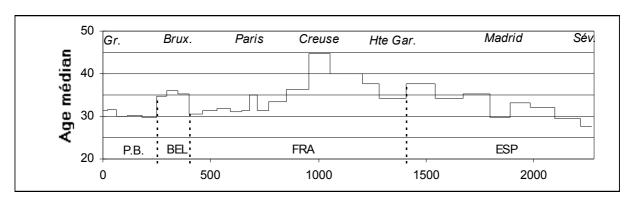
Proposez une cartographie des Ressemblances / Dissemblances en vous appuyant sur la matrice de dissimilarité obtenue pour les 7 critères socio-économiques.

Existe-t-il une relation entre ressemblance et proximité spatiale?


Document n° 4 : Cartographie des dissimilarités : l'exemple des pyramides des âges des régions européennes en 1980


Source : **Grasland C., 1997**, "L'analyse géographique des discontinuités territoriales : l'exemple de la structure par âge des régions européennes vers 1980 ", *Espace Géographique*, 4, 30 p





(e) Coupes géodémographiques Groningue-Séville

Document n°5 : Analyse multiscalaire des inégalités régionales

On considère la mise en place d'une union économique entre trois états (A, B, C) divisés en 30 regions (A1..A9, B1..B9, C1..C12). Ces régions ont des populations identiques mais se caractérisent par des niveaux de développement différents, mesurés sur une échelle allant de 0 à 100 (Figure 1 and Figure 2).

Figure 2.1 : Organisation territoriale

Ã1	A2	Ä3	B1	B2	В3
A4	A5	A6	B4	B5	В6
A7	A8	A9	В7	B8	В9
C1	C2	C3	C4	C5	C6
C7	C8	C9	C10	C11	C12

Figure 2.2 : Niveaux de développement

50	65	50	60	55	50
65	80	65	55	50	45
50	65	50	50	45	40
45	45	50	50	35	25
60	45	45	35	25	20

Problème:

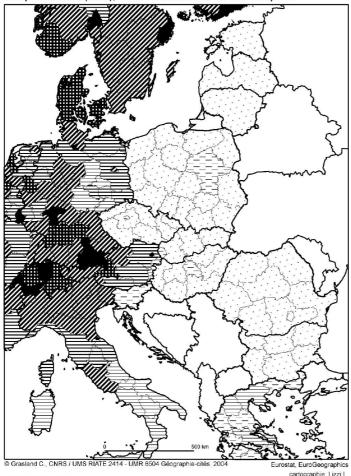
On suppose qu'un projet de coopération transfrontalière doit se mettre en place entre les regions *A9*, *B7*, *C3* et *C4* (représentées en gris) et que les décideurs politiques cherchent à évaluer les niveaux respectifs de développement de ces 4 régions afin de décider des formes de coopération transfrontalières qui pourront être mises en place.

En apparence, la mise en place de la coopération semble relativement aisée à mettre en œuvre car les quatre régions engagées dans la coopération ont exactement le même niveau de développement (50) et ne sont séparées par aucune discontinuité importante (ce qui n'est pas le cas dans d'autres zones transfrontalières).

Mais les choses sont-elles si simples ?

Suggestions:

Calculez pour chacune des régions considérées :


- (1) Sa position relative par rapport à l'ensemble de référence (A+B+C).
- (2) Sa position relative par rapport à son pays d'appartenance.
- (3) Sa position relative par rapport à la moyenne des régions qui lui sont contiguës.

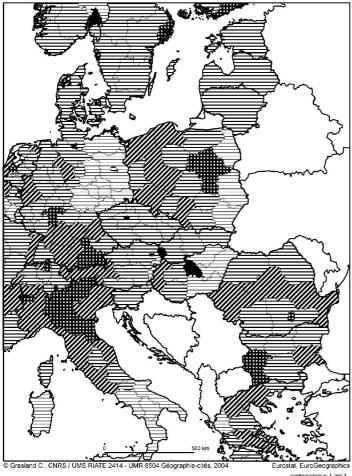
Que pouvez-vous en conclure ?

Document n°6 : Application de l'analyse multiscalaire à l'étude de la richesse par habitant des régions européennes

(b) Ecart au niveau européen PIB par habitant (euro), 1999 - Déviation au niveau européen

Index EU15 = 100

$$I_{i}^{Eur} = 100 \times \frac{GDP_{i}}{POP_{i}}$$

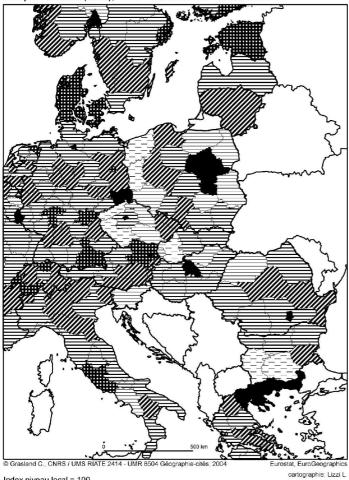

$$\sum_{j} Eur_{j} \times GDP_{j}$$

$$\sum_{i} Eur_{j} \times POP_{j}$$
(1)

Code	Region	GDP/inh	Index
UKI1	Inner London	55307	260.1
BE1	Région Bruxelles-capitale	47025	221.1
LU	Luxembourg	42514	199.9
DE6	Hamburg	41084	193.2
FR1	Île de France	34859	163.9
DE21	Oberbayern	34519	162.3
SE01	Stockholm	34019	160.0
DE71	Darmstadt	33818	159.0
AT13	Vienne	32921	154.8
FI16	Uusimaa (suuralue)	32198	151.4

Code	Region	GDP/inh	Index
BG06	Yugoiztochen	1536	7.2
RO02	Sud-Est	1497	7.0
RO04	Sud-Vest	1399	6.6
RO06	Nord-Vest	1370	6.4
RO03	Sud	1334	6.3
BG03	Severoiztochen	1287	6.1
BG01	Severozapaden	1269	6.0
BG02	Severen Tsentralen	1257	5.9
BG05	Yuzhen Tsentralen	1243	5.8
RO01	Nord-Est	1135	5.3

 $\it (c)~Ecart~au~niveau~national$ PIB par habitant (euro), 1999 - Déviation au niveau national

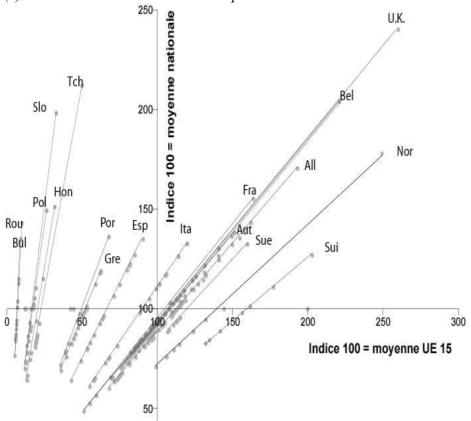

Index niveau national = 100

$$I_{i}^{Nat} = 100 \times \frac{\frac{GDP_{i}}{POP_{i}}}{\sum_{j} Nat_{ij} \times GDP_{j}} \times \frac{\sum_{j} Nat_{ij} \times POP_{j}}{\sum_{j} Nat_{ij} \times POP_{j}}$$
(2)

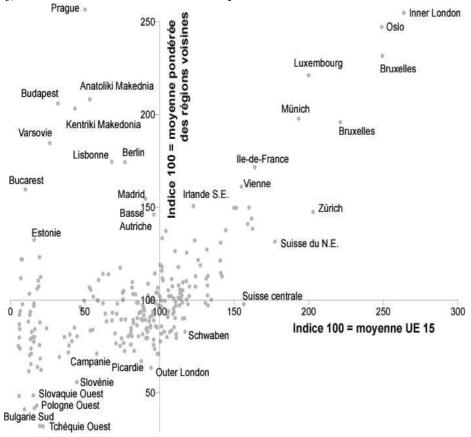
Code	Region	GDP/inh	Index
UKI1	Inner London	55307	240.2
CZ01	Praha	10628	211.9
BE1	Région Bruxelles-capitale	47025	203.9
SK01	Bratislavský	6959	198.2
DE6	Hamburg	41084	170.5
FR1	Île de France	34859	155.1
HU01	Közép-Magyarország	6765	151.1
PL07	Mazowieckie	5620	149.3
DE21	Oberbayern	34519	143.2
RO08	Bucuresti	2128	143.1

Code	Region	GDP/inh	Index
HU06	Észak-Alföld	2872	64.1
IT8	Campania	12316	64.0
ES43	Extremadura	9132	64.0
ITA	Sicilia	12302	64.0
DED1	Chemnitz	15244	63.3
IT93	Calabria	11728	61.0
DEE1	Dessau	14482	60.1
FR91	Guadeloupe (FR)	12670	56.4
FR93	Guyane française (FR)	11756	52.3
FR94	Réunion (FR)	10904	48.5

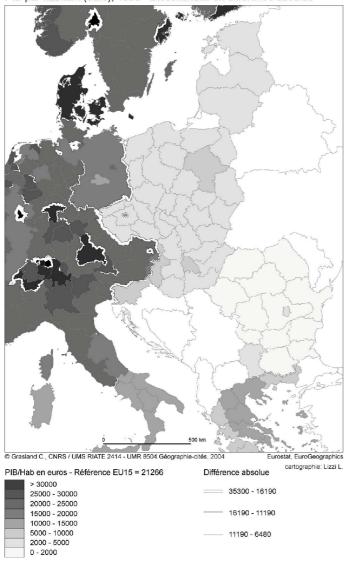
 $\textit{(d) Ecart au niveau local} \\ \textit{PIB par habitant (euro), } 1999 - \textit{Déviation au niveau local}$


Index niveau local = 100

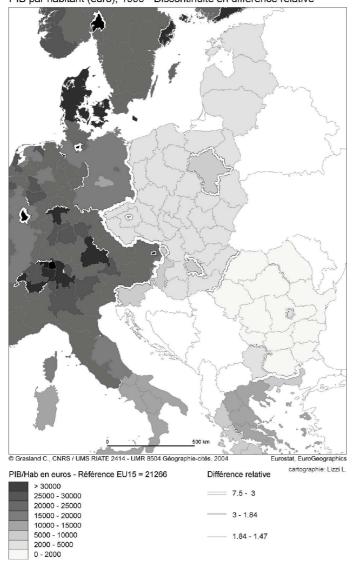
$$I_{i}^{Loc} = 100 \times \frac{GDP_{i}}{\sum_{j} Loc_{ij} \times GDP_{j}} \times \frac{GDP_{i}}{\sum_{j} Loc_{ij} \times POP_{j}}$$
(3)


Code	Region	GDP/inh	Index
UKI1	Inner London	55307	275.8
CZ01	Praha	10628	256.4
LU	Luxembourg	42514	221.0
GR12	Kentriki Makedonia	11314	208.0
HU01	Közép-Magyarország	6765	205.8
GR11	Anatoliki Makedonia, Thraki	9209	203.1
DE6	Hamburg	41084	197.6
BE1	Région Bruxelles-capitale/	47025	195.8
PL07	Mazowieckie	5620	184.5
PT13	Lisboa e Vale do Tejo	14441	174.5

Code	Region	GDP/inh	Index
CZ06	Jihovýchod	4359	62.3
PL03	Lubelskie	2629	61.6
SI	Slovénie	9446	55.7
SK02	Západné Slovensko	3267	48.6
BG05	Yuzhen Tsentralen	1243	48.2
PL0G	Zachodniopomorskie	3767	43.1
PL04	Lubuskie	3417	41.7
BG04	Yugozapaden	2001	41.1
CZ04	Severozápad	4190	32.1
CZ03	Jihozápad	4641	31.9


(e) Contradiction entre niveau européen et niveau national

(f) Contradiction entre niveau européen et niveau local



(g) $Discontinuit\'{e}s$ en valeur absolue : PIB par habitant (euro), 1999 - Discontinuit\'{e} en différence absolue

i	j	Region i	Region j	PIB i	PIB j	Différence
UKI1	UKI2	Inner London (R.U.)	Outer London (R.U.)	55307	20055	35252
LU	BE34	Luxembourg (Lux)	Luxembourg (B)	42514	16801	25713
LU	BE33	Luxembourg (Lux)	Liege (Bel)	42514	17639	24875
LU	FR41	Luxembourg (Lux)	Lorraine (Fra)	42514	18850	23664
LU	DEB2	Luxembourg (Lux)	Trier (All)	42514	19510	23004
BE1	BE24	Reg.Bruxelles (Bel)	Vlaams Brabant (Bel)	47025	24022	23003
DE6	DE93	Hamburg (All.)	Lueneburg (All.)	41084	18242	22842
NO01	NO02	Oslo & A. (Nor)	Hedmark og O. (Nor.)	41727	21088	20640
LU	DEC	Luxembourg (Lux.)	Saarland (All.)	42514	22006	20509
DE23	CZ04	Oberpfalz (All.)	Severozápad (Tch)	24303	4190	20113

(h) Discontinuités en valeur relative PIB par habitant (euro), 1999 - Discontinuité en différence relative

i	j	Region i	Région j	Gdp i	Gdp j	Ratio
GR11	BG05	An. Makedonia (Gre)	Yuzhen Tsen. (Bul)	9209	1243	7.4
AT12	SK02	Niederoest. (Aut)	Zap. Slovensko (Slo)	20447	3267	6.3
DE23	CZ04	Oberpfalz (All)	Severozapad (Tch)	24303	4190	5.8
GR12	BG04	Ke. Makedonia (Gre)	Yugoiztochen (Bul)	11314	2000	5.7
DE24	CZ04	Oberfranken (All)	Severozapad (Tch)	23470	4190	5.6
DE23	CZ03	Oberpfalz (All)	Jihozapad (Tch)	24303	4641	5.2
AT31	CZ03	Oberoest. (Aut)	Jihozapad (Tch)	23320	4641	5.0
DED2	PL04	Dresden (All)	Lubuskie (Tch)	16325	3417	4.8
DE22	CZ03	Niederbayern (All)	Jihozapad (Tch)	21935	4641	4.7
DE4	PL04	Brandenburg (All)	Lubuskie (Pol)	16146	3417	4.7

Document n° 7: Analyse des effets d'appartenance territoriale

(a) Définition des effets d'appartenance territoriale

On considère un ensemble de n lieux 1..i...N divisé en k régions R1..Rj..Rk et caractérisés par un attribut quantitatif **X** (X1..Xi...Xn). On souhaite déterminer s'il existe une relation entre l'appartenance des lieux aux différentes régions et la valeur de leur attribut X.

R	égio	on A				Régio	on B	
1		2						5
	15		5		4		20	
		3			40)		6
			25				60	
7				8		9		
		20			30		40	

Les chiffres en gras correspondent au code des unités et les chiffres en italiques à la valeur de l'attribut X.

(b) Une solution statistique particulière : l'analyse de la variance

On peut évaluer statistiquement l'importance de l'effet d'appartenance en décomposant la variation totale de l'indicateur X en deux composantes : la variation intra-régionale et la variation inter-régionale.

Unités	Régions	Valeur de	l'indicate	ur	Variance of	de l'indica	teur
i	j	Xi	Xj	Xtot	(Xi-Xtot) ²	(Xi-Xj) ²	(Xj-Xtot) ²
1	Α	15	15	25	100	0	100
2	Α	5	15	25	400	100	100
3	Α	25	15	25	0	100	100
4	В	40	40	25	225	0	225
5	В	20	40	25	25	400	225
6	В	60	40	25	1225	400	225
7	С	10	20	25	225	100	25
8	С	20	20	25	25	0	25
9	С	30	20	25	25	100	25
	•	•		Total	2250	1200	1050

Dans l'exemple ci-dessus la variation totale (2250) correspond à 53% de variations intrarégionale (1200) et 47% de variations inter-régionales (1050). D'un point de vue statistique, on peut dire que l'appartenance régionale "explique" 47% des différences de niveau entre les unités spatiales pour le critère X.

N.B. Un test statistique (test F de Fischer-Snedecor) permet de vérifier si cet effet d'appartenance régionale est significatif ou non. Si on note n le nombre d'unités et k le nombre de régions, on trouve :

 $F_{obs} = [(variation inter-régionale) / (k-1)] / [(variation inter-régionale) / (n-k)] = 2.625$

 $F_{\text{th\'eorique}} = F(k-1,n-k,\alpha)$ lu dans la table de Fischer-Snedecor pour un risque d'erreur α

 \Rightarrow Si on se fixe un risque d'erreur de 5%, on trouve $F_{théorique} = F(2,6,0.05) = 5.14$ donc on ne peut rejeter H0 et on conclue que l'effet d'appartenance régionale n'est pas significatif dans notre exemple

(c) Une solution générale

L'analyse de la variance est une solution rigoureuse sur le plan statistique, mais elle est assez abstraite et ne laisse aucune liberté dans le choix de la mesure de dissimilarité. En effet, l'utilisation de l'analyse de la variance revient (implicitement) à mesurer les dissimilarités entre les lieux à l'aide du critère $DSij = (Xi-Xj)^2$. Or, on peut souhaiter mesurer les dissimilarités à l'aide d'autres critère (*Cf. document 1*). Il existe une manière plus simple et plus générale pour mesurer les effets d'appartenance

lere étape : Définition d'une matrice de dissimilarité

i	Xi	DSij	1	2	3	4	5	6	7	8	9
1	15	1	-	10	10	25	5	45	5	5	15
2	5	2	10	-	20	35	15	55	5	15	25
3	25	3	10	20	-	15	5	35	15	5	5
4	40	4	25	35	15	-	20	20	30	20	10
5	20	 5	5	15	5	20	-	40	10	0	10
6	60	6	45	55	35	20	40	-	50	40	30
7	10	7	5	5	15	30	10	50	-	10	20
8	20	8	5	15	5	20	0	40	10	-	10
9	30	9	15	25	5	10	10	30	20	10	1

2º étape : Définition d'une matrice d'appartenance commune

i	Αi	Aij	1	2	3	4	5	6	7	8	9
1	Α	1	-	1	1	0	0	0	0	0	0
2	Α	2	1	-	1	0	0	0	0	0	0
3	Α	3	1	1	-	0	0	0	0	0	0
4	В	 4	0	0	0	-	1	1	0	0	0
5	В	5	0	0	0	1	-	1	0	0	0
6	В	6	0	0	0	1	1	-	0	0	0
7	С	7	0	0	0	0	0	0	-	1	1
8	С	8	0	0	0	0	0	0	1	-	1
9	С	9	0	0	0	0	0	0	1	1	-

3^e étape : Calcul de la dissemblance moyenne en fonction de l'appartenance commune

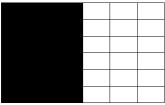
- \Rightarrow pour 2 lieux quelconques la dissemblance moyenne est **DS**_{Tot} = 19.2
- ⇒ pour 2 lieux de la même région (Aij=1), la dissemblance moyenne est **DS**_{Intra} = 17.8
- ⇒ pour 2 lieux de régions différentes (Aij=0) la dissemblance moyenne est **DS**_{Inter} = 19.6

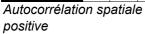
4º étape : Calcul du coefficient d'autocorrélation territoriale

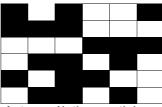
$G = 1 - (DS_{Intra}/DS_{Inter})$

Si G>0, l'autocorrélation territoriale est **positive**, ce qui signifie que deux lieux appartenant à une même région se ressemblent **plus** que deux lieux appartenant à des régions différentes.

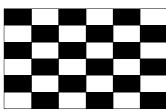
Si G<0, l'autocorrélation territoriale est **négative**, ce qui signifie que deux lieux appartenant à une même région se ressemblent **moins** que deux lieux appartenant à des régions différentes.


Si G=0, l'autocorrélation territoriale est **nulle**, ce qui signifie que deux lieux appartenant à une même région se ressemblent **ni plus ni moins** que deux lieux appartenant à des régions différentes


Dans notre exemple, G = 1 - (17.8/19.6) = +0.09 (très lègère autocorrélation territoriale positive)


Document n°8 : Analyse des effets de voisinage

(a) Définition des effets de voisinage


On dit qu'il existe un effet de voisinage **lorsque les lieux proches se ressemblent plus que les lieux éloignés**. Plus généralement, on parle **d'autocorrélation spatiale** lorsqu'il existe une relation entre la proximité spatiale des lieux et leur degré de ressemblance ou de dissemblance. On peut distinguer trois situations typiques :

Autocorrélation spatiale nulle

Autocorrélation spatiale négative

- ⇒ L'autocorrélation spatiale est **positive** lorsque deux lieux proches se ressemblent **plus** (en moyenne) que deux lieux éloignés.
- ⇒ L'autocorélation spatiale est **nulle** lorsque deux lieux proches se ressemblent **ni plus ni moins** (en moyenne) que deux lieux éloignés.
- ⇒ L'autocorrélation spatiale est **négative** lorsque deux lieux proches se ressemblent **moins** (en moyenne) que deux lieux éloignés.
- (b) Une solution statistique particulière : l'indice de Geary

L'indice de Geary propose de mesurer l'autocorrélation spatiale à l'aide d'un indice qui est le rapport entre la variance moyenne des régions contiguës (Vcont) et la variance moyenne de deux régions quelconques (Vtot).

Vcont = $\Sigma\Sigma$ Cij $(Xi-Xj)^2 / \Sigma\Sigma$ Cij = $\Sigma\Sigma$ Cij $(Xi-Xj)^2 / 2.L$

Vtot= $\Sigma\Sigma$ (Xi-Xj)² / n.(n-1) = 2. Σ (Xi-mX)² / (n-1)

Indice de Geary (C)= Vcont/Vtot =

Avec: n: nombre d'unités spatiales

L : nombre de régions contiguës

Cij: indice de contiguïté prenant la valeur Cij=1 pour les unités contiguës et Cij=0 dans le cas contraire

mX : moyenne de la variable X

Interprétation de l'indice de Geary (C):

 $C=1 \Leftrightarrow Vcont = Vtot \Leftrightarrow Autocorrélation spatiale nulle$

 $C < 0 \Leftrightarrow Vcont < Vtot \Leftrightarrow Autocorrélation spatiale positive$

 $C>0 \Leftrightarrow Vcont > Vtot \Leftrightarrow Autocorrélation spatiale négative$

N.B. Il est plus pratique d'utiliser l'indice (1-C) qui donne directement le signe de l'autocorrélation.

(c) Une solution générale

On reprend l'exemple du *document 7* et l'on cherche à déterminer s'il existe une relation entre la proximité spatiale des régions et leur degré de ressemblance :

lere étape : Définition d'une matrice de dissimilarité (Cf. document 3)

2^e étape : Définition d'une matrice de contiguïté

	.,	,					• • • • • • •	0,,,,,	
Cij	1	2	3	4	5	6	7	8	9
1	0	1	1	0	0	0	1	0	0
2	1	0	1	1	1	0	0	0	0
3	1	1	0	1	0	1	1	1	0
4	0	1	1	0	1	1	0	0	0
5	0	1	0	1	0	1	0	0	0
6	0	0	1	1	1	0	0	1	1
7	1	0	1	0	0	0	0	1	0
8	0	0	1	0	0	1	1	0	1
9	0	0	0	0	0	1	0	1	0

3^e étape : Calcul de la dissemblance moyenne en fonction de la contiguïté

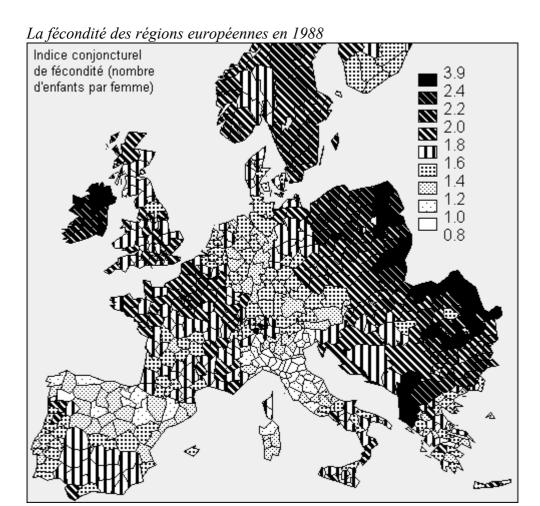
- \Rightarrow pour 2 lieux quelconques la dissemblance moyenne est **DS**_{Tot} = **19.2**
- \Rightarrow pour 2 lieux proches (Cij=1), la dissemblance moyenne est $DS_{Prox} = 19.7$
- \Rightarrow pour 2 lieux éloignés (Cij=0) la dissemblance moyenne est **DS**_{Eloi} = **18.7**

4º étape : Calcul du coefficient d'autocorrélation spatiale

$Z=1-(DS_{Prox}/DS_{Eloi})$

Si Z>0, l'autocorrélation territoriale est **positive**, ce qui signifie que deux lieux proches se ressemblent **plus** que deux lieux éloignés.

Si Z<0, l'autocorrélation territoriale est **négative**, ce qui signifie que deux lieux proches se ressemblent **moins** que deux lieux éloignés.


Si Z=0, l'autocorrélation territoriale est **nulle**, ce qui signifie que deux lieux proches se ressemblent **ni plus ni moins** que deux lieux éloignés

Dans notre exemple, Z = 1 - (17.8/19.6) = -0.05 (très lègère autocorrélation spatiale négative)

Remarque : On a décidé ici de mesurer la proximité spatiale par la contiguïté (présence d'une frontière commune) mais **on aurait pu introduire d'autres critères de proximité**, fondés par exemple sur la distance à vol d'oiseau, la distance temps, ...

On construit souvent des variogrammes (ou corrélogrammes) qui sont des courbes exprimant la relation moyenne entre similarité et distance.

Document n°9 : Application des méthodes d'analyse des effets de proximité et des effets de voisinage

(a) Deux hypothèses

Hypothèse 1 : La fécondité d'une région européenne dépend de la fécondité de son pays d'appartenance. En effet, l'Etat dispose de nombreux moyens d'action (primes pour les familles nombreuses, lois interdisant l'avortement, etc.) qui peuvent contribuer à accroître ou réduire la fécondité.

- ⇒ Si cette hypothèse est vraie, on devrait observer une **autocorrélation territoriale positive** (deux régions d'un même pays se ressemblent plus que deux régions de pays différents).
- **Hypothèse 2** : La fécondité d'une région européenne dépend de la fécondité des régions voisines. En effet, il existe des phénomènes de diffusion des comportements démographiques et plus généralement des comportements sociaux qui se propagent dans l'espace de proche en proche selon des processus d'imitation.
- ⇒ Si cette hypothèse est vraie, on devrait observer une **autocorrélation spatiale positive** (deux régions contiguës se ressemblent plus que deux régions non contiguës).

L'examen de la carte ne permet pas de trancher facilement entre les deux hypothèses. On décide donc de calculer des coefficients d'autocorrélation spatiale ou territoriale.

(b) Choix du critère de dissimilarité

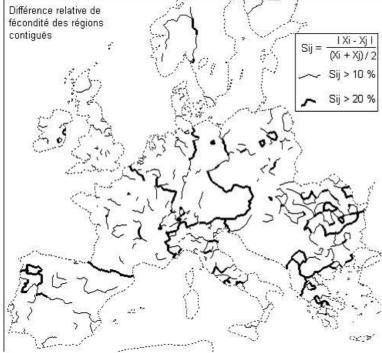
On a décidé de mesurer des différences relatives de fécondité exprimées en %

Dsij = abs(Xi-Xj)/moy(Xi, Xj)

(c) Calcul des dissimilarités moyennes de fécondité

		Non-voisines	Voisines	Ensemble
		Cij=0	Cij=1	
Pays différents	Aij=0	26.0 %	18.3 %	26.0 %
Même pays	Aij=1	15.9 %	9.2 %	15.4 %
Ensemble		25.4 %	10.5 %	25.3 %

(d) Calcul des coefficients d'autocorrélation spatiale et territoriale


$$G=1-(15.4/26.0)=+0.41$$

⇒ **L'autocorrélation territoriale est fortement positive** : deux régions d'un même pays se ressemblent nettement plus que deux régions de pays différents

$$Z=1-(10.5/25.4)=+0.59$$

⇒ L'autocorrélation spatiale est fortement positive : deux régions contiguës se ressemblent nettement plus que deux régions non contiguës

(e) Mise en évidence des discontinuités de fécondité en Europe

Une analyse plus approfondie des résultats montre que les deux effets se combinent ce qui entraîne l'apparition de discontinuités spatiales le long des frontières. Les différences de fécondité sont graduelles à l'intérieur des Etats alors qu'elles sont brutales de part et d'autre des frontières.

Source : Decroly J.M., Grasland C., (1993), "Frontières, systèmes politiques et fécondité en Europe", *Espace Population Sociétés*, 2, pp. 135-152